Reduced surface integral equations

نویسنده

  • l.R. Ciric
چکیده

Laplacian potential fields in stratified media are usually analyzed using an integral equation for an unknown function over the union of all the interfaces between regions with different homogeneous materials. In this paper, the field problem is solved using a reduced integral equation involving a single unknown function over only the boundary of the source region. The new integral equation is derived by introducing surface operators to express the potential and its normal derivative on each interface in terms of a single unknown function over the same interface. These operators and the corresponding single functions are obtained recursively, from one interface to the next. Thus, a substantial decrease in the amount of necessary numerical computation and computer memory is achieved especially for systems containing identical layered bodies where the reduction operators are only constructed for one of the bodies. The purpose of this paper is to derive reduced integral equations by directly applying the interface conditions and to show their high computational efficiency for systems of layered bodies. PACS Nos.: 02.30.Rz, 02.70.Pt, 41.20.Cv Resume: On analyse generalement Jes champs de potentiel de Latt'a..c~ dans Jes milieux stratifies a !'aide d'une equation integrale pour une fonction inconnue sur !'union de toutes !es interfaces entre Jes regions avec differents materiaux homogenes. Nous solutionnons ici le probJeme de champ en UtiJisant UJl~ esuation integraJe reduite impJiquant une seuJe fonction inconnue sur la surface de 1r.~atifce. La nouvelle equation integrale est obtenue ,, en introduisant des operateurs de surface pour ecrire le potentiel et sa derivee normale sur chaque interface en terme d'une seule fonction inconnue sur la meme interface. Ces operateurs et la fonction inconnue sont obtenus de fa\:on recursive, d'une surface a l'autre. Nous reduisons ainsi de fa\:on significative Jes besoins en calcul numerique et en memoire, specialement pour Jes systemes qui contiennent des couches identiques oil Jes operateurs de reduction sont construits pour une seule couche. Notre but iciest d'obtenir des equations integrales reduites en appliquant directement !es conditions lirnites aux interfaces et de demontrer la haute efficacite de la methode pour !es systemes stratifies. [Traduit par la Redaction] Received 'Ntl'f\lmf,>!•' 200f. Accepted 17 January 2007. Published on the NRC Research Press Web site at http://cjp.nrc.ca/ on 19 February 2007. I.R. Ciric. Department of Electrical and Computer Engineering, The University of Manitoba, Winnipeg, MB R3T 5V6, Canada (e-mail: [email protected]). Can. J. Phys. 84: 1049-1061 (2006) doi: 10.1139/P07-008 © 2006 NRC Canada 1050 Can. J. Phys. Vol. 84, 2006

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations

In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...

متن کامل

Simulation of Light-Nanowire Interaction in the TE Mode Using Surface Integral Equations

In this paper, the scattering of a plane monochromatic electromagnetic wave from a nanowire with circular cross-section in the transverse electric (TE) mode is simulated using the well-known Stratton-Chu surface integral equations. For an ordinary dielectric nanowire the refraction phenomenon is nicely simulated. In the case of a plasmonic nanowire no sign of surface plasmon excitation and prop...

متن کامل

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

متن کامل

Numerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function

A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...

متن کامل

NUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES

This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.  

متن کامل

Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013